1 min readEnvironmentally Compatible Organic Solar Cells

Berlin, Germany — Environmentally compatible production methods for organic solar cells from novel materials are in the focus of “MatHero”.

The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making organic photovoltaics competitive to their inorganic counterparts by enhancing the efficiency of organic solar cells, reducing their production costs and increasing their life-time. “Green” processes for materials synthesis and coating play a key role. “MatHero” is funded by the European Commission with an amount of EUR 3.5 million.

Organic solar cells will open up entirely new markets for photovoltaics. These “plastic solar cells” have several advantages: They are light-weight, mechanically flexible, can be produced in arbitrary colours, and hence allow a customized design for a variety of applications. Moreover, organic solar cells can be produced by printing processes with a low consumption of materials and energy, enabling the inexpensive production of high numbers of solar cells. In order to become competitive in established markets, various challenges still have to be mastered. The energy conversion efficiency has to be improved to more than ten percent. Costs of materials synthesis have to be reduced. The life-time of the materials and modules has to be enhanced to more than ten years.

To reach these objectives, the European project consortium of “MatHero” studies environmentally compatible processes for materials synthesis, coating and printing. All novel printable materials are formulated using non-chlorinated solvents. “The use of environmentally compatible solvents is a major prerequisite for cost reduction, as complex safety measures on the industrial scale will no longer be required,” Dr. Alexander Colsmann of KIT’s Light Technology Institute (LTI) explains. Together with Christian Sprau, Colsmann coordinates the project.

“MatHero – New materials for highly efficient and reliable organic solar cells” covers the complete value chain of organic solar cell fabrication: From the design and synthesis of the polymers used to assemble the solar cells to the fabrication and characterization of the modules to the assessment of device stability. The project goal is an environmentally compatible printed organic solar module initially for off-grid applications. In the consortium, physicists, chemists, materials scientists, and engineers cooperate in an interdisciplinary project team in order to study fundamental scientific and product development aspects. The KIT scientists develop new solar cell architectures and analyze process up-scaling, focusing on enhancing solar cell efficiencies as well as on using environmentally compatible solvents.

Article based on materials provided by Helmholtz Association.

Solar Energy

Leave a Reply

© Mindzilla. All rights reserved.