2 min readRole of GABA Neurons in Central Circadian Clock has been Discovered

Nagoya, Japan — The research team led by Dr. Daisuke Ono and Prof. Akihiro Yamanaka of the Graduate School of Medicine, Nagoya University, collaborating with Prof. Ken-ichi Honma and Prof. Sato Honma of Hokkaido University Graduate School of Medicine, and Prof. Yuchio Yanagawa of Gunma University Graduate School of Medicine revealed that inhibitory neurons (GABAergic neurons) of the central circadian clock in the suprachiasmatic nucleus (SCN) refine circadian output rhythms.

Physiology and behavior such as sleep/wakefulness, body temperature, and endocrine functions, exhibit 24-hour oscillations called circadian rhythms. The temporal order of physiology and behavior is regulated by the central circadian clock located in the SCN. Our findings can be developed to understand how the SCN regulates physiological phenomena. Furthermore, it might aid the development of new clinical approaches for a variety of diseases related to the circadian clock. These achievements were published online in Communications Biology on June 21, 2019.

This work was supported in part by The Uehara Memorial Foundation, The Nakajima Foundation, GSK Japan Research Grant 2015, Kowa Life Science Foundation, Takeda Science Foundation, Kato Memorial Bioscience Foundation, the Project for Developing Innovation Systems of the MEXT, and Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program, Ministry of Education, Culture, Sports, Science and Technology, Japan and JSPS KAKENHI (No. 15H04679, No. 26860156, No. 15K12763, No. 26290002, No. 15H05872, No. 17H05550, No. 18H02477).

The temporal order of physiology and behaviour in mammals is controlled by the master circadian clock located in the SCN. The SCN generates an endogenous circadian oscillation that entrains a day-night alternation. The SCN is composed of heterogeneous neurons with various neurotransmitters. Of these, an inhibitory neurotransmitter, γ-Amino-Butyric-Acid (GABA) is expressed in almost all SCN neurons; however, its role in circadian physiology is still unclear.

In the present study, we examined GABA signalling in the SCN using mice lacking vesicular GABA transporter (VGAT-/-) or a GABA synthesizing enzyme, glutamate decarboxylase (GAD65-/-/67-/-). We simultaneously measured circadian rhythms with a bioluminescence reporter for the clock gene product PER2 (PER2::LUC), spontaneous firing, and intracellular calcium (Ca2+) levels for several circadian cycles in cultured SCN slices of perinatal mice. SCN lacking GABA exhibited burst firing throughout a day. The burst firing was associated with an abrupt increase in intracellular Ca2+, which was synchronous throughout the entire SCN slice. By contrast, the circadian PER2 rhythm was essentially kept intact. We also found that SCN-specific VGAT depletion in adult mice deteriorated the circadian behavioral rhythms.

In conclusion, GABA is necessary for suppressing the burst firing of neuronal activity and abrupt increases of intracellular Ca2+ levels but not for the generation and stability of the molecular circadian oscillation in the SCN. The GABA network may refine the circadian firing rhythm to ensure noiseless communications with neurons outside the SCN.

Article adapted from a Nagoya University news release.

Publication: GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice. Ono, D et al. Communications Biology (June 21, 2019): Click here to view.

Circadian rhythms, GABA, Neurons, suprachiasmatic nucleus

Leave a Reply

© Mindzilla. All rights reserved.